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Abstract

This work describes an approach for smoothing noisy peak-shaped analytical data based on the identification of the struc-
tural form of the signal. The data series was described first as a succession of ‘peak structures’ and then as a succession of
‘meta-peak structures’. This description enabled convenient identification of the characteristic peaks arising from an analyti-
cal measurement and their separation from the noise components in the data. The method was applied to both voltammetric
and spectroscopic data featuring different distributions of noise in the frequency domain. It was demonstrated that the sug-
gested structural approach is successful in identifying the characteristic peaks with precision and, subsequently, in smoothing
the test signals. The smoothing operation relying on the structural approach is fast, and, in contrast to traditional smoothing
techniques, the fine detail of the signals is retained and no artefacts are generated as a result of the smoothing operation.
q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

ŽBy definition, trace analysis techniques such as
electrochemical stripping analysis and atomic ab-

.sorption spectroscopy are specifically designed to
determine low concentrations of analytes. However,
in most cases, the limit of detection is dictated by the
noise in the measurement step rather than limitation
in the instrumentation side of the relevant analytical

Ž .technique. As a result, the signal-to-noise SrN ra-
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Žtio where S is the magnitude of the signal and N is
.half the peak-to-peak magnitude of the noise be-

comes the main figure of merit for assessing the de-
Ž .tection and quantification capability of a technique:

the SrN ratio must exceed a certain numerical value
in order for the presence and the amount of a species
to be reported at a certain confidence level. Given that
most trace analytical techniques operate at, or close
to, their limiting sensitivity, the magnitude of the
signal, S, is usually difficult to increase. However,
many methods have been devised to minimise the
contribution of the noise component, N. The noise-
reduction methods range from hardware modifica-

Ž .tions grounding and analogue filters to on-line sig-
Žnal processing real time FFT filtering, signal averag-
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. Žing and off-line data processing digital filtering,
. w xcurve fitting 1–3 .

This work reports a novel off-line method for
smoothing peak-shaped analytical signals. The
method is based on the description of the experimen-
tal data series, first in terms of ‘peak structures’ and
then in terms of ‘meta-peak structures’; ‘meta-peak
structures’ corresponding to analytical peaks are dis-
tinguished from structures corresponding to noise by
observing certain differentiating criteria. Based on
this discrimination, smoothing of the signal could be
implemented. The suggested smoothing procedure
was successfully applied to electrochemical and
spectroscopic measurements that suffer from signifi-
cant noise interference.

2. Theory

In this section, the rationale and the theory behind
the proposed peak-identification and smoothing
method are outlined.

The problem can be formulated as follows: Given
a series of noisy measurements, identify and measure

Ž .one or more characteristic peaks if present and
smooth out the spurious peaks, i.e., the background

Žnoise. A characteristic peak is one that signifies the
.presence of one of the substances to be measured .

Although the primary concern is the measurement
Ž .of the characteristic peak s , it is also desirable that

the noise is smoothed out in the series resulting from
the processing. Particular attention must be paid,
however, so that the smoothing process does not af-
fect the characteristic peaks. The true measurement
details must be preserved as they are in the original
data.

It becomes clear that the required course of action
Ž . Ž .is: a to identify the characteristic peaks; and, b

smooth the rest of the data. Therefore, the desired
smoothing will be achieved and, most importantly,
the measurement of the characteristic peaks will be
unaffected. In the following subsections, the theory
and process of each of these two phases will be pre-
sented and analysed.

2.1. Peak identification

The most important problem is the identification of
the characteristic peaks in the data contaminated with

noise. The distribution of noise across the frequency
Žspectrum white noise, sinusoidal noise and 1rf

.noise and its intensity may be variable. However, a
human observer is capable of thinking in terms of
abstractions and has no great difficulty in classifying
parts of the data into characteristic peak structures and
noise structures. This is a classic example in which
the structural differences between characteristic peaks
and noise can be exploited in distinguishing between
the two.

In order to identify the structural differences be-
tween characteristic peaks and noise, it is necessary
to define what a ‘peak structure’ refers to.

Ž .A peak structure PS is defined as the descrip-
tion of a peak-shaped consecutive set of data points

Ž .in terms of a left local minimum L , a local maxi-
Ž . Ž .mum P and a right local minimum R . Each of

these three reference points is a data point. All the
Ž .other contributing data points if any lie between

Ž .each pair of reference points L and P, or P and R
<and therefore: ; x g PS x / L n x / P n x / R:

L-x-PkP)x)R.
The whole series of the experimental data points

can be represented as a series of consecutive PS’s.
ŽEach PS 1F iFN, N being the number of struc-i

. Ž .tures is associated with a triplet L , P , R . Each ofi i i

these three reference points is a data point, which is
Ž .represented by a pair x , y where 1F jFM, Mj j

being the number of data points.
The PS’s are identified by sequentially examining

each of the experimental data points and identifying
local maxima and local minima.

The advantage of describing the data points as
PS’s is twofold. Firstly, a kind of abstraction is
achieved which will allow more meaningful reason-
ing about the data. Secondly, the amount of data is
reduced thus, increasing the efficiency of the method.

Some key observations about PS’s can be made at
this point. First of all, PS’s corresponding to noise
comprise the significant majority of peak structures.
Another observation is that noise PS’s have more
similarities between them than they have with what
are identifiable as characteristic peaks. The word
identifiable is used here because it is observed that in
many cases a characteristic peak is a composite of
more than one PS’s.

From the above it is clear that the PS’s corre-
sponding to noise must be identified and ignored but
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at the same time the PS’s that comprise each charac-
teristic peak must not be considered as noise. The
latter PS’s must be ‘fused’ into a new PS that corre-
sponds to the characteristic peak. This requirement
leads to the following definition:

Ž .A meta-peak structure MPS is defined as the de-
scription of a peak-shaped set of P reference points
Ž .of consecutive PS’s in terms of a left local mini-

Ž . Ž .mum ML , a local maximum MP and a right lo-
Ž .cal minimum MR . Each of these three reference

peaks is a P reference point of a PS. All the other
Ž .contributing P’s if any , lie between each pair of
Ž .reference peaks ML and MP, or MP and MR and

<therefore: ; x g MPS x / ML n x / MP n x /

MR: ML-x-MPkMP)x)MR.
The whole series of P’s can be represented by a

Žseries of MPS’s. Each MPS 1F iFK , K being thei
.number of structures is associated with a triplet

Ž .ML , MP , MR . Each of these three referencei i i

peaks is a peak reference point P of a PS, which as
mentioned earlier itself corresponds to a data point.
An illustration of the relationship between an MPS,
its PS’s and the data points is shown in Fig. 1. In
practical terms, in the identification of the series of

Ž .the MPS’s, the series of P’s from the PS’s are taken

as input, while for the identification of PS’s the input
is the original data. In effect, the following set trans-

� 4 � 4 � 4 � 4formations take place: data ™ PS ´ P ™ MPS .
The function ‘™ ’ stands for a ‘many to one’ rela-
tion.

The procedure for deriving the MPS’s is very sim-
ilar to that used for the identification of the PS’s. In
this case, the P’s in the series of PS’s are sequen-
tially examined and local maxima and local minima
are identified.

The advantages of having described the data in
terms of the series of MPS’s are significant. An even
higher abstraction is achieved in that the unnecessary
details of local variations are suppressed while im-

Ž .portant information location of characteristic peaks
is preserved. Data reduction has also been achieved.
The PS’s corresponding to noise have been fused into
a smaller number of larger and smoother MPS’s.
Most importantly though, each characteristic peak is
now described by an MPS as its constituent PS’s have
been fused. Therefore, a clear distinction between
characteristic peaks and noise is effected because
each structure is described by an MPS. This fact en-
ables direct comparison of MPS’s to identify each
MPS corresponding to a characteristic peak. More-

Fig. 1. An example of an MPS with corresponding PS’s and data points.
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over, no loss of information is incurred as the loca-
tion and height of peaks remains the same as it is in
the original data. There is a 1:1 correspondence be-
tween the MP value of an MPS and the underlying
value of the original data point.

Having achieved a functional description of the
data in terms of the series of MPS’s, the next step is
to identify and express the structural differences be-
tween a typical noise MPS and an MPS describing a
characteristic peak. A measure of difference between
MPS’s that will separate the two types of MPS’s is
therefore required. This measure will comprise one or
more features which will be employed in the classi-
fication of the MPS’s into the two required cate-
gories. The choice of classification features is an im-
portant aspect in the effectiveness of the method, in
terms of both accuracy and speed of execution. Con-
sequently, a small number of features is desirable,
each of which should be derived from an MPS using
simple and fast operations.

It is observed that the shape of an MPS is a fun-
damental characteristic that differentiates between the
two classes of MPS. A straightforward and in most
cases sufficient description of shape can be ex-
pressed by width and height features:

The width of an MPS is defined as the scaled hor-
izontal distance between ML and MR. More
specifically, MPS sMR yMLw x x

The height of an MPS is defined as the greater of
Ž .the vertical heights of the two legs of the struc-

�Ž . Ž .4ture: MPS smax MP yML , MP yMR .h y y y y

To ensure consistency, both MPS and MPS arew h

subsequently scaled with the maximum width and
height correspondingly in the series.

Other shape related candidate features are given
below.

The width ratio of an MPS is defined as the ratio
of the smaller over the larger horizontal distance be-
tween the MP and the other two ends. More specifi-
cally, if MPS sMP yML and MPS sMR ylw x x rw x

MP thenx

MPS° lw
, if MPS -MPSlw rwMPSrw~MPS sw_r MPSrw
, otherwise.¢MPSlw

The height ratio of an MPS is similarly defined,
given that MPS sMP yML and MPS sMPlh y y rh y

yMR asy

MPS° lh
, if MPS -MPSlh rhMPSrh~MPS sh_r MPSrh
, otherwise.¢MPSlh

As expected from the observations, an MPS cor-
responding to a characteristic peak has in the vast
majority of cases greater values for MPS and MPSw h

than an MPS corresponding to noise. A very good
classification of the MPS’s into the two classes can
therefore be obtained using only these two features.
In the MPS y MPS feature space a decisionw h

boundary is identified in the form of a straight line
separating instances of the two classes. An MPS

Ž .whose feature vector MPS , MPS lies to the leftw h

of and below the decision boundary is labelled as
noise. After experimental validation, the equation of
this straight line is chosen to be ys1yx.

It should be noted that other combinations of fea-
tures could also be used such as the MPS withw

ŽMPS noise MPS’s tend to have uneven MPS andh_r lh
.MPS . However, the chosen approach is both com-rh

putationally cheaper and there is less variability in the
feature values.

In exceptional cases, it is noted that an MPS cor-
responding to noise has width and height that qualify
it to be classified as a characteristic peak. For this to

Ž .happen, the characteristic peak s in that data series
must be quite low, at a comparable level to that of the
highest noise MPS. The nature of the noise structure
causing the exception is different from the back-
ground noise found in the measurement. It is at-
tributed to a transient in the data series. Although this
initial part of the measurement data can be easily
eliminated without loss of significant data, the pro-
posed structural approach can be refined to identify
such MPS’s and reject them.

The observed structural differences between a
characteristic peak MPS and a transient MPS are as
follows. Firstly, the transient MPS abruptly gains
height and then slowly descends. In terms of the
available shape features, this can be expressed with a
small MPS value and a quite larger MPS one.lw rw
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Therefore, such an MPS will have small MPSw_r

value. In contrast, MPS’s corresponding to character-
istic peaks have larger values of MPS .w_r

Secondly, the right part of the transient MPS con-
tains more P points from the PS series than the left
part. A new feature is derived from this observation
to complement the shape related ones:

The peak-content ratio is defined as smallest value
of P content over the largest value of P content in
an MPS. If in an MPS the MPS is the numberlpc

of P’s between ML and MP, and MPS is therpc

number of P’s contained between MP and MR,

MPS° lpc
, if MPS -MPSlpc rpcMPSrpc~MPS spc_r MPSrpc
, otherwise.¢MPSlpc

Both the MPS and the MPS are used to dif-w_r pc_r

ferentiate between characteristic peak MPS’s and
transient ones. It should be noted however, that these
two extra features are calculated and considered only
after the first classification, and for the characteristic
peak candidates only.

The issue of exceptions is interesting as in the
cases that peaks corresponding to transients were en-
countered as characteristic peak candidates the de-
sired peaks were quite low. This fact might, in the
first place, raise questions about the validity of the
measured data and the level of confidence associated
with the particular measurement. In any case, the in-
herent flexibility of the structural approach allows for
the configuration of possible additional exceptions or
indeed any other type of structure that should be dif-
ferentiated from the rest.

Having presented and discussed the features, the
algorithm used for the classification of MPS’s into
characteristic peaks and noise is outlined:

for each MPS
Ž .if MPS qMPS )F thenh w hw

ŽŽ . Ž ..if MPS )F AND MPS )Fw_r w_r pc_r pc_r

then MPS is a characteristic peak
else MPS is noise

else MPS is noise
The values of the feature decision thresholds have

been experimentally determined as F s1, F shw w_r

0.11 and F s0.11.pc_r

2.2. Smoothing

The identification of the characteristic peaks en-
ables the correct smoothing of the original measure-
ment data. It is now possible to smooth all noise
structures while leaving the characteristic peaks un-
changed. Therefore, the objective is to smooth all
PS’s apart from those whose P is the MP of an MPS
identified as a characteristic peak. Therefore, apart

Ž .from the maximum point of the characteristic peak s
all PS’s will be smoothed including the PS’s that
comprise the left and right parts of the characteristic

Ž .peak s .
The smoothing in the proposed structural ap-

proach is performed by replacing the data points of a
PS by a point corresponding to the centre of gravity
of the PS. Assuming that there are N data points
�Ž . < 4x , y is1, . . . , N included between the L and thei i

R points of a PS to be smoothed, the coordinates of
Ž .the centre of gravity point G , G are calculated as:x y

N N

G s x rN and G s y rN.Ý Ýx i y i
is1 is1

This strategy produces a more accurate smooth-
ing, minimising the side-effects caused by large dif-
ferences in the size of the various noise PS’s.

3. Experimental procedure

3.1. Reagents, experimental procedure and data col-
lection

All the chemicals were of analytical grade or bet-
Ž .ter. Ultra pure water )18 MV was obtained from

an Elgastat Maxima water purification system.
Ž .Electrochemical measurements of Ni II and

Ž .Co II by adsorptive stripping voltammetry were car-
ried out by making use of the experimental configu-

w x Ž . Ž .ration reported earlier 4 . Ni II and Co II were
complexed with dimethylglyoxime and the resulting
complex was adsorbed on the surface of a rotating
disk glassy carbon electrode covered with a mercury
film. The accumulated complex was reduced by
scanning the potential of the working electrode to the

Ž .cathodic direction in the square wave mode which
Žcaused the appearance of peaks corresponding to the
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Ž . Ž . .reduction of Ni II and Co II in the complex in the
recorded current–potential curve.

Spectroscopic measurements involved the detec-
Ž .tion of Pb II by atomic absorption spectroscopy.

Lead was atomised electrothermally in a Perkin Elmer
HGA 600 graphite furnace employing a graphite
L’vov platform and the absorption of its atoms was
monitored at 283.3 nm as a function of time with a
Perkin Elmer Model 3100 AAS, resulting in peak
shaped absorption-time profiles.

3.2. Software implementation

The software realisation of the analytical peak
identification and smoothing method was imple-
mented in the C programming language. For the ex-
periments referred to in this paper, the software was
run on an IBM PC compatible based on an Intel
486DX microprocessor operating at 33 MHz. On av-
erage, for a typical data set of 512 points, run-times
were in the very close region of 0.1 CPU s.

4. Results and discussion

Ž .A typical stripping voltammogram for Ni II and
Ž .Co II is illustrated in Fig. 2a. The voltammogram

Žfeatures two peaks arising from the reduction of
Ž . Ž .. ŽNi II and Co II , exhibits a sloping baseline due to

.the charging current , features an SrN ratio of 12
Ž Ž . .respective to the smaller Co II peak and is con-
taminated with a transient at the beginning of the data

Ž .series probably due to some electrode effect . The
power spectrum of this signal is illustrated in Fig. 2b.
This spectrum indicates a strongly localised fre-
quency component at the 255th harmonic which cor-
responds to the contribution of the square wave po-
tential excitation signal. Contribution of noise at other
harmonics, in terms of power, is small compared to
the noise component at the 255th harmonic. A typi-

Ž .cal atomic absorption spectrum for Pb II with an

SrN ratio of 8 is illustrated in Fig. 3a. Its power
Ž .spectrum shown in Fig. 3b suggests that the noise

is uniformly distributed across the frequency spec-
Ž .trum i.e., it is white in nature . The signals in Fig.

2a and Fig. 3a are two examples of analytical signals
with strongly correlated and uncorrelated noise, re-
spectively. Since the given examples provide a satis-
factory approximation of the two most widely en-
countered types of noise, they were selected for
demonstrating the efficiency of the suggested
smoothing procedure.

The results from the first step of the suggested
Žprocedure i.e., first the identification of the peak

.structures and then of the meta-peak structures in the
voltammetric signal of Fig. 2a is illustrated in Fig. 2c.
It can be seen that the identification of the peak loca-
tions was successful. The results of the second step
Ž .i.e., the actual smoothing are illustrated in Fig. 2d.
These results indicate that, in contrast to other
smoothing procedures, the structural approach did not
affect the fine detail in the data while at the same time
a significant improvement in the SrN ratio was
achieved. An important feature of the algorithm, as
suggested from the results in Fig. 2d, is that it is ca-
pable of handling signals with sloping baselines
which commonly occur in analytical measurements.

The initial results for the smoothing of the atomic
Žabsorption signal are illustrated in Fig. 3c the first

step of locating the peak structures is not shown for
.this signal . Although the initial SrN in this signal

Žwas worse than in the voltammetric signal the con-
centration was actually close to the limit of determi-

.nation , the analytical peak was successfully identi-
fied and the signal was smoothed, resulting in a sig-
nificantly improved SrN ratio. Nevertheless, oscilla-
tions still exist after this initial smoothing of the sig-
nal. However, after the meta-peaks identification, the
smoothing procedure can be iterated two or more
times. This process results in further improvement of
the SrN ratio, as shown in Fig. 3d. Although some
noise remains after filtering, the technique is free

Ž . Ž . Ž .Fig. 2. a A typical stripping voltammogram for 10 nM Ni II and Co II adsorbed on a rotating mercury film electrode as their dimethyl-
glyoxime complexes. Square wave scanning potential with frequency 40 Hz and pulse height 10 mV. Adsorption for 60 s at y0.7 V at a

Ž .rotation speed of 10 Hz. Supporting electrolyte ammonia buffer pH 9. Dimethylglyoxime concentration 0.1 mM. b The power spectrum of
Ž . Ž . Ž . Ž . Ž .the signal in a . c The graph of PS’s superimposed on the original signal of a . d The smoothed signal of a superimposed on the

original data.
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Ž .Fig. 2 continued .
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Ž . Ž . Ž .Fig. 3. a A typical atomic absorption signal for the determination of 2 ppb of Pb II . Sample volume 20 ml. Matrix 0.1 M KNO . b . The3
Ž . Ž . Ž . Ž .power spectrum of the signal in a . c The initial smoothed signal of a superimposed on the original data. d The final smoothed signal

Ž . Ž .of a , after an extra iteration on the smoothed data of c , superimposed on the original data.
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Ž .Fig. 3 continued .
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Fig. 4. A typical stripping voltammogram for 10 nM riboflavin adsorbed on a mercury film electrode. Square wave scanning at 40 Hz, pulse
height 10 mV. Adsorption for 60 s at 0.0 V and at a rotation speed of 10 Hz. Electrolyte 0.01 M NaOH.

from disturbing artefacts such as the ‘Gibb’s oscilla-
tions’ that typically arise when Fourier filters are

w xemployed 5 .
An important advantage of this particular imple-

mentation of structural filtering is the computational
speed: for typical applications, only a fraction of a
second is required. This is in contrast to other digital
frequency domain and time smoothing procedures,
which rely on the derivation of Fourier transforms or
the time-domain multiplication of signals with filters
impulse responses, respectively. Another advanta-
geous property of the proposed strategy is that the
original peak heights are maintained, as opposed to
most frequency-domain procedures that typically
cause a reduction in the peak heights proportional to

w xthe filtering efficiency 6 .
To demonstrate the efficiency of the method de-

veloped in dealing with sudden transients in the sig-
Žnal such as loss of electrode connection in electro-

.chemical experiments the method was also applied to
such signals; an example was the determination of ri-

Ž .boflavin by adsorptive stripping voltammetry Fig. 4 .
The transient was correctly identified as such and not
assigned as a peak.

5. Conclusions

In this work it has been demonstrated that the
suggested structural approach can be successfully ap-
plied to the identification and smoothing of analyti-
cal peak-shaped signals featuring low SrN ratios
Žvery close to the limiting sensitivity of analytical

.methods . The method is fast, insensitive to sloping
backgrounds, can cope with transients in the data se-
ries and retains the fine detail of the underlying sig-
nal without affecting the analytical peak heights. The
smoothing potential of the method can be increased
by its iterative nature while the computational speed
makes it preferable to other conventional filtering
methods.
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