DESCRIPTION OF THE METHOD

Name: TAQ system

Author: Nam Quan Nguyen

Participant: Nam Quan Nguyen^a, Tran Hai Anh Vo^a, Quoc Thang Nguyen^a.

Address: (a) Cinnamon AI Lab Inc.

Our method includes principles of operation and steps:

1. Text and Non-text classification

In this step, we use an encoder-decoder model deep learning with an variant architecture of U-net [2] and training with multi-task (7 tasks) to segmentation each pixel belong to text or non-text class. Specifically, 7 tasks are text mask, non-text mask, non-text contour mask, 4 sides of text component (top, bot, left, right).

2. Smooth text components

First, we extract text components from text mask in step 1.

Then we binarize image, extract connected components (CCs) and based on [1], we classify each CC belongs text or non-text class.

Finally, we extract all text line with textual CCs and only keep strong text lines to smoothing text mask from step 1. A text line is strong if have some textual CCs (>= 3) and homogeneous about width, height of textual CCs.

3. Non-text classification

First, we extract non-text components from step 1 and use non-text contour mask to eliminate redundancy components

Then get all text components is inside of each non-text components and classify to table, image, or chart class.

Reference:

[1] T. A. Tran, I. S. Na, S. H. Kim, "A Robust System for Document Layout Analysis using Multilevel Homogeneity Structure," Expert Systems With Applications, vol. 85, pp. 99-113, 2017.

[2] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015